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Abstract

Block copolymer self-assembly provides a platform for fabricating dense, or-
dered nanostructures by encoding information in the chemical architecture
of multicomponent macromolecules. Depending on the volume fraction of
the components and chain topology, these macromolecules form a variety of
spatially periodic microphases in thermodynamic equilibrium. The kinetics
of self-assembly, however, often results in initial morphologies with defects,
and the subsequent ordering is protracted. Different strategies have been de-
vised to direct the self-assembly of copolymer materials by external fields to
align and perfect the self-assembled nanostructures. Understanding and con-
trolling the thermodynamics of defects, their response to external fields, and
their dynamics is important because applications in microelectronics either
require extremely low defect densities or aim at generating specific defects at
predetermined locations to fabricate irregular device-oriented structures for
integrated circuits. In this review, we discuss defect morphologies of block
copolymers in the bulk and thin films, highlighting (a) analogies to and dif-
ferences from defects in other crystalline materials, (b) the stability of defects
and their dynamics, and (c) the influence of external fields.
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AB diblock
copolymer: a polymer
derived from two
linear homopolymers
(blocks) A and B that
are covalently bonded
together at their ends

INTRODUCTION

The self-assembly of block copolymers has attracted abiding interest during past decades because
it provides a robust and versatile strategy for fabricating dense, ordered structures on the scale of
nanometers, which are important for applications ranging from filtration to the manufacturing of
microelectronic devices (1–6). The chemical architecture dictates the length scale and symmetry
of the nanostructure. Even the deceptively simple AB diblock copolymer, which is composed of
two chemically different, linear, flexible chain molecules that are joined at their ends, can form
lamellar, hexagonally arranged cylindrical, body-centered-cubic spherical, gyroid, and Fddd
phases in the bulk (7, 8) as one varies the volume fraction of the components.

In experiments, however, the single-crystalline periodic microphases typically are not real-
ized, although they represent the minimum of the free energy, i.e., the thermodynamic equilib-
rium. Instead, a rich variety of defects is observed that results in the formation of polycrystalline
morphologies and hence potentially limits the use of block copolymer assembly in applications.
Consequently, much effort has been directed toward avoiding the formation of defects and accel-
erating their annihilation. To devise appropriate strategies, understanding and controlling of the
thermodynamics and dynamics of defects are critical.

There are two qualitatively different reasons for the occurrence of defects in block copolymers:

1. In the ultimate vicinity of the order-disorder transition (ODT), the excess free energy, �Fd,
of a defect is comparable to the thermal energy scale kBT , and defects can be conceived
as thermal fluctuations around a perfectly ordered state. These equilibrium fluctuations
characterize the thermodynamic state and are important to describe the transition from a
disordered to an ordered, crystalline state. Most prominently, fluctuations alter the transi-
tion in a symmetric, lamella-forming diblock copolymer from second to first order via the
Brazovskii mechanism (9), and the ODT in these soft, multicomponent polymer materials
shares common features with the crystallization and melting in hard crystals. It is of basic
scientific interest to explore the similarities and differences between defects in these soft
matter systems and atomic crystals.

2. Outside the vicinity of the ODT, however, the excess free energy of a defect significantly
exceeds kBT . In the intermediate segregation regime, �Fd � O(100kBT ) is a typical value
for defects in thin films of lamella-forming block copolymers (10). The large excess free
energy gives rise to a vanishingly small defect density at thermal equilibrium. Thus, ex-
perimentally observed defects cannot be conceived as equilibrium fluctuations around a
perfectly ordered state at intermediate or high segregation, but they stem from the kinetics
of structure formation.

The large excess free energy results from the fact that, in a dense melt, a collection of many
molecules participate in the defect. Their number can be estimated by the dimensionless polymer
density,

√
N = ρ0

N R3
e0, where ρ0 denotes the segment number density and N and Re0 are the

number of segments per polymer and the end-to-end distance, respectively. The latter quantity
also provides an order-of-magnitude estimate for the periodicity of the microphase and the spatial
extent of defects. Because the flexible macromolecules adopt random-walk-like conformations,
R2

e0 ∼ N , the quantity N is proportional to the number of segments. The invariant degree of
polymerization typically adopts value of the order N ∼ 104. Therefore, even if the free-energy
loss of an individual molecule is only a fraction of the thermal energy scale, the total excess free
energy of a defect, �Fd, will be prohibitive. Because all free energies scale with kBT

√
N , so does

the free-energy barrier, �Fb, for collective rearrangements that lead to the removal of defects.
Thus, in general, defects are long-lived at intermediate and high segregation.
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Microphase
morphology: spatial
arrangement of the
different segment
species, A and B, on a
length scale of 10–100
nanometers, which is
set by the size of the
polymer molecules

Chemoepitaxy:
directed self-assembly
by chemically
structured substrates,
e.g., guiding lines that
attract one component
of the block copolymer

Graphoepitaxy:
directed self-assembly
by topographically
structured substrates,
e.g., grooves

Grain: region with
uniform translational
and orientational
domain order

Directed
self-assembly (DSA):
self-assembly of
materials where the
large-scale
morphology and
orientation are
controlled by external
forces

Irrespective of whether defects are equilibrium fluctuations in the ultimate vicinity of the ODT
or whether they are metastable states in which the system got trapped in the course of structure
formation, their presence limits applications of block copolymer materials. On one hand, the local
characteristic dimension or topology of domains at a defect may significantly differ from the perfect
structure and thereby affect selective transport through the microphase-separated morphology,
which is important for isoporous block copolymer membranes used in filtration applications. On
the other hand, defects disrupt the long-range translational and orientational order and are detri-
mental to the registration of the microphase-separated morphology with boundaries—a property
that is critical to applications in microelectronic manufacturing.

The understanding and control of the thermodynamics of defects and the dynamics of defect
generation and removal are of fundamental scientific interest and, simultaneously, are important
for the development of applications. One strategy to avoid defect formation in the course of
self-assembly and to facilitate their removal consists in directing the self-assembly by external
fields (4, 11–16). These external fields can be long-range—like electric fields or shear flow—or
they can be short range—like chemical guiding patterns on the supporting substrate of a thin
film (chemoepitaxy) or geometric substrate features (graphoepitaxy). Long-range fields aim at
controlling the overall orientation of the structure on large length scales. Shear (12, 17–26) is
frequently used to macroscopically align block copolymer domains in bulk (17) or thin films (4,
16, 27). Angelescu et al. (19) achieved long-range, in-plane order in monolayer-thin films of
cylinder-forming copolymers orienting their axis parallel to the shear (19). By a judicious choice
of film thickness, bilayer-thick films of sphere-forming copolymers also can be directed to order
into a quasi-single-grain structure by shear (20). Alternatively, electric fields have been applied to
align block copolymer structure (28–38), exploiting the anisotropy of the free energy of a spatially
modulated phase that results from the contrast of dielectric constants between dissimilar blocks
(28, 29).

The advantage of shear and electric fields in directing self-assembly is their long-range nature,
which affords a manipulation of the structure without explicit guidance on the nanometer length
scale. However, it has been difficult to fabricate structures with the excessively low defect densities
demanded in many applications of the semiconductor industry. Moreover, these long-range fields
control the orientation of the structure but do not break the translation invariance; i.e., they do
not necessarily result in registration of the copolymer structure with external boundaries.

Short-range, chemical (chemoepitaxy) (39) or topographical (graphoepitaxy) (40) guiding fields
have been employed to direct the structure formation in block copolymers. These two techniques
combine the advantages of traditional lithography to fabricate the chemical or topographical
guiding pattern with the copolymer’s ability to spontaneously form dense, sub-30-nm structures
in thin films. Directed self-assembly (DSA)—chemoepitaxy and graphoepitaxy—has become one
of the most appealing next-generation lithography techniques, benefiting from reduced feature
sizes, integration into the conventional lithographic process flow, low cost, and high throughput.
Both strategies have been reviewed recently (4, 11, 13–16).

One of the main tasks of DSA is to fabricate large-scale, defect-free, geometrically simple
structures. In principle, this goal can be achieved by destabilizing all possible defects via the
presence of the external guiding field and preventing any new defect from forming. Graphoepitaxy
directs the ordering by using topographically sculptured substrates, e.g., wide channels (3) or
periodically arranged nanoposts (41). The spacing of these topographical substrate features is
commensurate with the copolymer periodicity; typically, a small integer multiple not larger than
5 is permissible for defect-free assembly (41). Chemoepitaxy, in turn, directs the self-assembly
by chemically patterned substrates that are composed of regions that preferentially interact with

www.annualreviews.org • Block Copolymers 189

A
nn

u.
 R

ev
. C

he
m

. B
io

m
ol

. E
ng

. 2
01

5.
6:

18
7-

21
6.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
Fu

da
n 

U
ni

ve
rs

ity
 o

n 
03

/2
2/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



CH06CH10-Mueller ARI 14 July 2015 19:11

one or the other component of the copolymer (39). The periodicity of the guiding pattern may
be close to that of the block copolymer. In this case, the advantage of DSA consists of mitigating
defects in the chemical guiding pattern and reducing the line-edge roughness by replacing
the interfaces of the chemical guiding pattern with internal AB interfaces between copolymer
domains that are characterized by an interface tension and rigidity. Alternatively, the periodicity
of the chemical guiding pattern may be an integer multiple of the copolymer domain spacing.
In this case, the copolymer structure multiplies the low spatial frequency of the chemical guiding
pattern [density multiplication (42)]. Defect-free assembly is achieved for multiplication factors of
approximately 4 in stripe patterns (43, 44) and approximately 3 in hexagonal patterns (45). Guiding
patterns with a larger multiple have a lower direction capability and increase the probability of
defects.

Another challenging task of DSA consists in manufacturing device-oriented, irregular or aperi-
odic structures that differ from the bulk phases of block copolymers, e.g., structures that resemble
integrated circuits (13, 46–55). Some of these device-oriented structures share many features with
prototypical defects. In contrast to the first task, the main objective is to stabilize these useful
programmed defects at specified locations.

For both applications of DSA, understanding and controlling defects are critical. To understand
the thermodynamics and kinetics of defects in block copolymer materials, it is useful to build on
the vast knowledge of defects in atomic crystals and liquid crystalline systems (56, 57) and to draw
parallels and highlight differences to these intensively studied materials. The striped morphology
in lamellar-forming block copolymers or lying cylinders in a thin film displays smectic order like
that in liquid crystals. Likewise, standing cylinders in thin films exhibit hexagonal order that is, for
instance, observed in colloid crystals. These similarities not only apply to the spatially modulated
phases but also extend to the types of defects, e.g., disclinations, dislocations, and grain boundaries.
However, there are also important differences between defects in soft copolymer materials and
atomic crystals: (a) Whereas the number of atoms or colloids and their size are fixed, the number
of domains in a self-assembled copolymer morphology is not constrained by a conservation law.
Instead, domains can shrink or expand (58) and be created or destroyed to minimize the excess
free energy of a defect in copolymer systems. Even nonbulk morphologies like perforated lamellae
may transiently and locally form in the course of defect annihilation (59, 60). (b) The internal
AB interfaces between domains have a spontaneous curvature that can be adjusted by the chain
architecture (61, 62). (c) In a thin film, there is an interplay between the 2D symmetry of the smectic
or hexagonal order and local, 3D structure of intermediates in the course of defect evolution (63).
(d ) The kinetics of defect annihilation is based on the motion of chain molecules in a complex,
anisotropic domain structure giving rise to a defect-structure/chain-mobility relationship (60).
These additional features of defects in copolymer materials allow them to respond in intriguing
ways to geometric confinement and external guiding fields.

In this review, we provide an overview of the structure, thermodynamic stability, and kinetics
of defects in the self-assembly of block copolymer materials, highlighting aspects that are relevant
to the DSA of copolymer structures in thin films by chemical (chemoepitaxy) or topographical
(graphoepitaxy) guiding patterns on the substrates. We focus mainly on basic defect structures
that are typical for DSA applications; large composite defects (e.g., fingerprint pattern) are more
characteristic of unguided self-assembly on laterally uniform supports. The following section
discusses equilibrium properties of defects in stripe and hexagonal patterns as well as grain bound-
aries and irregular patterns. The section on Dynamics of Defects presents some aspects of the
defect motion, defect annihilation, and large-scale grain growth. A brief perspective concludes our
review.
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Figure 1
Scanning electron micrograph of the fingerprint morphology formed by solvent annealing of symmetric,
lamella-forming PS-b-PMMA thin films. The light and dark domains correspond to polystyrene (PS) and
poly(methyl methacrylate) (PMMA) domains, respectively. Five types of defects are indicated: � PMMA-
core dislocation; � disclination pair: +1/2 PS and −1/2 PMMA; � disclination pair: +1/2 PMMA and
−1/2 PMMA; � disclination pair: +1/2 PMMA and −1/2 PS; and � PS-core dislocation. The red and blue
highlights illustrate the increased connectivity in the PS and PMMA domains, respectively. The scale bar
corresponds to 400 nm. Adapted with permission from Reference 69. c© 2013 American Chemical Society.

THERMODYNAMIC EQUILIBRIUM PROPERTIES OF DEFECTS

Defects in Stripe Patterns

Stripe patterns are formed either by highly confined, single-layer-thick films of cylinder-forming
block copolymers (64–66) or by compositionally symmetric, lamella-forming block copolymers
(39, 61, 67–70). In the former systems, the air and the supporting substrate preferentially interact
with one of the components, resulting in parallel alignment of the cylindrical minority domains
with the substrate. A typical example is a block copolymer comprised of polystyrene (PS) and
poly(methyl methacrylate) (PMMA). In the latter systems, the interactions of the block with the
supporting substrate and the air must be carefully tuned (71, 72) so that the surface free-energy
difference of the two block species is small and standing lamellae perpendicular to the substrate
are formed.

Topological defects in these quasi-2D patterns of lines and spaces give rise to splay and bend
distortions of the domains similar to what is observed in smectic liquid crystals (56, 57). Most
defects are composed of dislocations and disclinations, as illustrated in Figure 1, which depicts a
typical fingerprint morphology obtained by self-assembly without guiding fields. Often, disclina-
tions appear as pairs with oppositely oriented Burgers vectors (66).

Whereas defect types and geometries in films of lying cylinders and standing lamellae are
very similar, the former morphology typically exhibits a faster kinetics of defect annihilation
compared with lamellar-forming systems (73). In cylinder-forming systems, a continuous matrix
of the majority component gives rise to different diffusion pathways of the polymers from those
in lamellar-forming systems (74).

The defect density in experiments depends on the thermodynamic state and annealing condi-
tions (69, 70, 75, 76). The role of increased segregation strength compared to the ODT in the
bulk has been studied in cylinder-forming PS-b-poly(2-vinylpyridine) (PS-b-P2VP) copolymers
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with molecular weight of 26 kDa within wide channels (75). At a temperature T = 100◦C, far
below the ODT temperature, TODT = 212.5 ± 2.5◦C, in the bulk, excellent orientational order
and very low defect density are observed. In this temperature range, defects exclusively consist of
dislocations. These isolated point defects are characterized by an excess free energy, �Fd. Thus,
at any finite temperature, T > 0, there exists a finite equilibrium density of dislocations, which
is proportional to the Boltzmann factor, exp(−�Fd/kBT ). The temperature dependence of the
defect density yields an estimate of �Fd ≈ 14(1)kBT . These dislocations destroy truly long-range
positional order of the stripes. For distances greater than ξd ∼ exp(�Fd/2kBT ), a nematic phase
is formed instead, which is characterized by quasi-long-range orientational order; i.e., orienta-
tional correlations decay like a power law. At higher temperatures, T > 180◦C, dislocation pairs
are created, and their density rapidly increases with T. These topological defects destroy the ori-
entational order, and at T > 195◦C, only exponentially decaying orientational correlations are
observed. Intriguingly, the transition from the nematic to the isotropic, disordered state of the
film occurs below the ODT temperature of the bulk.

Qualitatively, these experiments can be nicely described by the theory of melting in a 2D
smectic liquid crystal (77), corroborating the universal behavior of defects in block copolymer
systems. Quantitatively, the rather large excess free energies, �Fd, of defects at intermediate and
strong segregation give rise to a large characteristic distance, ξ d, between defects. Therefore,
it is feasible to fabricate smectic order by combing the self-assembly on short distances with
chemical or topographical guiding patterns that direct the structure on larger scales than
ξ d.

This insightful study also highlights the critical role of the excess free energy of defects (75).
One necessary requirement of DSA is a sufficiently large �Fd ∼

√
N kBT so that the defect density

in equilibrium is small. This condition is easier to fulfill at large degrees of polymerization. As the
critical dimensions of the structures decrease, however, the macromolecules must become shorter.
Thus, fewer molecules participate in a defect, thereby decreasing �Fd.

Moreover, the excess free energy of dislocations in cylinder-forming systems appears to be
smaller than �Fd in lamella-forming systems. One of the multiple reasons is that �Fd in systems
with standing lamellae is proportional to the film thickness. Campbell et al. (70) have observed
that defect density in quasi-2D lamellar patterns decreases with the film thickness. Mishra and
coworkers (76) have found that the defect density in bilayer patterns of lying cylinders is lower
than in monolayer patterns of graphoepitaxially aligned structures thermally annealed at the same
temperatures. Additionally, they suggest that the distortion of the unit cell of the cylinders owing
to the confinement into thin films shifts the ODT to lower temperatures than the bulk transition
temperature (76).

The excess free energy of defects does not depend only on the molecular weight and film thick-
ness. Campbell et al. (61, 69) have systematically investigated the dependence of the PS/PMMA-
core ratio in the edge dislocations and disclinations on the compositional asymmetry, f, of the
lamella-forming copolymers, revealing that the core type is dictated by the compatibility between
the local defect geometry and the interfacial curvature of the corresponding domains. In block
copolymers, the internal interfaces between domains are characterized by a spontaneous curvature.
If the volume fraction, f, is asymmetric, interfaces prefer to bend toward the minority domain.
Because in an edge dislocation the curvature of the end is convex, minority domains preferentially
terminate. This effect facilitates the formation of a continuous network of the majority component
in a lamellar morphology with defects.

The spontaneous curvature of internal interfaces can be additionally adjusted by chain topol-
ogy. For example, in compositionally symmetric ABA triblock copolymers, which exhibit in many
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Ohta-Kawasaki (OK)
model: continuum
model of microphase
separation, where the
free energy consists of
a local square-gradient
functional of the
composition and a
long-range
contribution derived
from Leibler’s
random-phase
approximation

respects very similar equilibrium properties as symmetric diblock copolymers of half the length
(78), experiments observe that domains of the middle B block preferentially end (62). Calculations
(79, 80) show that the loop-forming middle block, which is anchored with both ends at the AB
interface, hardly induces a spontaneous curvature, whereas the end block, A, bends the internal
interface toward the middle domain, B, to enlarge the available volume and reduce the stretching
of the end blocks. This asymmetry between the middle and end blocks thus gives rise to a spon-
taneous curvature of the internal interfaces that is in agreement with the experimental findings.
Additionally, strategies for tailoring the thermodynamics of defects are discussed in the section
on Irregular, Device-Oriented Structures and Defectants.

Defects in Hexagonal Patterns

Compositionally asymmetric block copolymers form cylindrical or spherical domains in the bulk
and have been employed to fabricate 2D hexagonal structures that find applications, for instance, in
fabricating quantum dot arrays for lasers (81) or high-density magnetic domains for storage media
(82–84). These structures are fabricated by highly confined single-layer-thick films of sphere-
forming block copolymers or cylinder-forming block copolymers with balanced surface tensions
of both components (58, 85–96).

A hexagonal structure with two dislocation defects is illustrated in Figure 2, which was obtained
by 2D cell dynamics simulation of a modified Ohta-Kawasaki (OK) model (97). Hexagonal patterns
and their defects in block copolymer materials are closely related to 2D triangular solids, e.g.,
colloidal crystals, which have attracted longstanding scientific interest. Their melting is driven by
a thermal generation of dislocation and disclination defects (77, 98–102). Kosterlitz, Thouless,
Halperin, Nelson, and Young (99–102) proposed that the melting of a 2D solid occurs in two
sequential, continuous transitions—from the solid phase to a hexatic phase and then to a disordered
liquid. Two-dimensional triangular solids exhibit only quasi-long-range translational order with
an algebraic decay of translational correlations and long-range orientational order because of
thermally excited long-wavelength phonons. The transition from this solid to the hexatic phase is
driven by the unbinding of dislocation pairs with oppositely oriented Burgers vectors. The hexatic
phase is characterized by an exponential decay of translational order but a power-law decay of
sixfold orientational order. The melting of this hexatic phase proceeds via the dissociation of
disclination pairs [Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) theory].

Experiments by Segalman et al. (85–87) have investigated the ordering and melting of a single-
layer-thick film of sphere-forming PS-b-P2VP copolymer domains on wide topographical sub-
strate patterns. Most of topological defects are dislocations composed of a pair of a fivefold coor-
dinated site (−60◦ disclination) and a sevenfold coordinated sphere (+60◦ disclination) (indicated
by the colored lines in Figure 2a). In two dimensions, dislocations spontaneously form and anni-
hilate. An isolated dislocation gives rise to a long-range strain field. Therefore, two dislocations
with opposite Burgers vectors form a pair at strong segregation to eliminate the net strain at large
distances, reducing the concomitant excess free energy. Upon reducing the segregation strength,
dislocation pairs unbind, resulting in a hexatic structure. Even closer to the ODT, dislocations split
up into their component disclinations, forming free disclinations. This dissociation of disclination
pairs destroys the long-range orientational order in accord with the KTHNY theory for hard,
triangular solids (99–102). Best order is obtained by annealing at temperatures close to but below
the solid-to-hexatic transition because the ordering kinetics is rapid, yet thermal defect generation
is insignificant (86).

Boundaries between grains of different orientations can be described as an array of dislocations.
The distance between dislocations increases like the inverse disorientation angle, α, between the
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aa bb cc dd

ee ff gg hh

Figure 2
Hexagonal structures and their time evolution predicted by 2D cell dynamics simulation of a modified
Ohta-Kawasaki model. Panel a indicates two dislocations by short color lines, and the Delaunay triangles
around the bottom dislocation identify the fivefold and sevenfold coordinated domains. Subsequent panels
correspond to different stages of time evolution, depicting the annihilation of these two dislocations with
opposite Burgers vectors guided by a sparse rectangular dot pattern. Black and white circles indicate where a
new domain is going to appear or has just come out, respectively. Reprinted with permission from
Reference 97. c© 2011 AIP Publishing LLC.

grains (89). Vega and coworkers (91) revealed by simulations of the OK free-energy functional
the presence of large hexagonal cell superstructures (Moiré patterns) at grain boundaries when
the system is in the vicinity of the ODT and the order-order transition to the stripe pattern.

Defects in 3D Bulk Systems

During the self-assembly of block copolymers in the bulk, the long-range order of any ordered
phase is unavoidably disrupted by the presence of a variety of grain boundaries that separate
ordered domains with different orientations. Defects often accumulate in these grain boundaries,
surviving for protracted times and affecting mechanical, transport, and electrical properties.

Grain boundaries in stripe patterns have been studied by experiment (103–109, 110–114) and
theory (115–120). The domain structure locally adjusts to minimize the free energy at twist and
tilt grain boundaries. At twist grain boundaries, the internal AB interfaces form a doubly periodic
array of saddle surfaces known as Scherk’s first surface (104, 105) or helicoid sections at low twist
angle (104, 107). Both are minimal surfaces with zero mean curvature. At tilt boundaries, the
domains can be discontinuous (T-junctions) or continuous. The latter ones form chevron shapes
at small tilt angles and � shapes at larger tilt angles (106, 115, 117). The protrusion at the tip of an
� grain boundary increases the area of the internal AB interface and frustrates the chain packing
but reduces the curvature free energy (115).

Whereas grain boundaries are metastable states in bulk systems, they can be stabilized by
confinement. Nealey and coworkers (121, 122) have studied the morphology of lamella-forming
block copolymers sandwiched between two apposing, stripe-patterned surfaces (chemoepitaxy).
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Figure 3
(top) Particle simulations of the morphology of a lamella-forming block copolymer between two apposing
stripe patterns at distance D apart. Contour plots present the time-averaged composition of the localized and
delocalized state for twist angles α = 90◦ and α = 28◦, respectively. The position of the twist grain
boundary, localized at the bottom substrate, x ≈ 0, and delocalized in the middle of the film, x = D/2
(delocalized), is indicated by a plane. The green surfaces show the internal AB interfaces of the microphase.
(bottom, left) Sketch of the interface localization-delocalization transition (ILDT) as a function of inverse film
thickness, 1/D; inverse twist angle, 1/α; and period mismatch between the guiding patterns, Lbottom, Ltop,
and bulk lamellae, L0. μ ∼ [(Lbottom − L0)2 − (Ltop − L0)2]. Paths � and � in the plane μ = 0 correspond
to a second- and first-order interface localization-delocalization transition, respectively. μ > 0 for paths
� and �. Path � does not show any singularity of the interface position, whereas path � crosses the
surface of prewetting transitions. (right) Position x of the interface as a function of 1/α for the four paths.
Reproduced from Reference 125. c© 2012 Am. Phys. Soc.

The chemical stripe patterns on the top and bottom substrate preferentially interact with one
component of the copolymer and align and register the lamella morphology at the confining
surfaces. The patterns are twisted by an angle α, and a twist grain boundary is formed. Figure 3
illustrates that this system exhibits an interface localization-delocalization transition (123–125),
where the twist grain boundary either is located close to one of the confining surfaces (left, local-
ized state) or fluctuates in the middle of the film (right, delocalized state). The transition between
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Self-consistent field
theory (SCFT):
mean-field
approximation of a
multicomponent
polymer system

250 nm

a b c d

Figure 4
Scanning electron micrography images of a PS/PMMA/PS-b-PMMA ternary blend directed to assemble
into (a) nested arrays of jogs, (b) isolated PMMA jogs, (c) isolated PS jogs, and (d ) arrays of T-junctions.
Reprinted with permission from Reference 47. c© 2007 Am. Chem. Soc.

those two states can be continuous or abrupt (first-order), and it is closely related to the wetting
of the lamellar grain on the chemical guiding pattern. The perpendicular location, x, of the grain
boundary can be controlled by the geometrical characteristics of the confinement, which can be
directly related to the common thermodynamic parameters of a wetting transition. Temperature
corresponds to the twist angle between the apposing surface patterns and the mismatch between
the periodicity of the surface pattern, and the bulk morphology of the copolymer material is the
analog of the chemical potential. Understanding the interaction of a grain boundary with the con-
finement and the concomitant wetting phase transitions provides the opportunity to control the
3D structure of the copolymer morphology. Stacking of aligned single-layer templates (126) and
functionalized posts in bilayer films (52) has been used to direct the assembly in three dimensions.

Irregular, Device-Oriented Structures and Defectants

The fabrication of basic structural subunits of integrated circuits [including nested arrays of bends
and jogs, isolated jogs, and arrays of T-junctions (46)] requires geometric structures that are irreg-
ular, isolated, or aperiodic, having no analogs in the bulk-phase diagram of copolymers. Figure 4
shows that external fields provided by chemoepitaxy have been employed successfully to specify the
type and placement of these device-oriented structures in lamellar-forming copolymers (46, 47).
Similarly tailored arrays of posts have been employed to direct the assembly of cylinder-forming
block copolymers into bends, junctions, and other aperiodic features at specific locations (48, 51).
Several theoretical calculations or simulations have been devoted to verifying this method and have
aimed to optimize the post array as well as the post shape (48, 49, 53–55). Often the geometry
of these device-oriented structures locally resembles defect geometries (e.g., continuous tilt grain
boundaries); therefore, it is important to understand how to tailor the excess free energy of defects.

The challenge in fabricating these nonbulk structures involves accommodating spatially
varying curvatures and distances between the internal AB interfaces that give rise to packing
frustrations (127). For instance, in a nested array of bends (resembling a tilt grain boundary with
angle �), the distance, LC = LS/ cos(�/2), between the internal AB interfaces at the corner of
the bend is larger than the distance, LS, in the lamellar region. The local bend structure can be
stabilized by adding A and B homopolymers, which segregate to the corners of the bends and
selectively and locally swell the morphology, thereby mitigating the free-energy cost of these
irregular structures (46). Alternatively, Kang and coworkers (128) observed an enrichment of
nanoparticles at the corners of the bends in copolymer-nanoparticle composites. The localization
of nanoparticles at defects has also been observed in self-consistent field theory (SCFT) (129),
and Bockstaller and coworkers (114) have experimentally observed the enrichment of filler
particles at grain boundaries. This is a universal strategy. Homopolymers and nanoparticles act
as defectants (130, 131). In analogy to surfactants that are enriched at a surface, thereby lowering
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the surface tension, defectants segregate to localized nonbulk structures (e.g., the corners of the
bends) and lower their excess free energy, thereby reducing the thermodynamic driving force for
defect removal and allowing the copolymer material to adopt this irregular structure.

The influence of additives on defect free energies has been investigated by theory (116) and
experiment (108). For instance, Burgaz & Gido (108) studied T-junctions in a blend composed of
miktoarm star block copolymer, I2S (I: polyisoprene, S: polystyrene), and PI homopolymer of low
molecular weight, observing an increased density of T-junctions compared with continuous tilt
grain boundary in pure copolymers. PI domains are always continuous across the grain boundary,
whereas the terminating PS lamellae feature enlarged semicylindrical end caps and a concomitant
increase of the lamellar spacing at the T-junction (108). This observation can be related to two
molecular characteristics: (a) The branched architecture of I2S favors the formation of curved
interfaces with the two PI arms being preferentially located on the convex side to reduce crowd-
ing. This facilitates the formation of semicylindrical PS end caps. (b) The PI homopolymers are
preferentially enriched in the high-strain area between the gap of two semicylindrical end caps
and the boundary line to mitigate the packing frustration of the PI blocks of I2S. These examples
illustrate how one can encode information about specific nonbulk structures into the molecular
architecture of the copolymer material.

Irregular structures can be stabilized by several mechanisms: (a) control of the spontaneous
curvature of the internal AB interfaces by molecular architecture, (b) adjustment of the distance
between interfaces by local segregation and swelling in multicomponent systems or bridge for-
mation in multiblock copolymers (132), or (c) mitigation of packing frustration by polydispersity
(133–136). These mechanisms can be inferred from systematically exploring and rationalizing
the intriguing multitude of bulk structures that simple two-component AB copolymer materials
can form when one allows for blending or alternative chain topologies (137, 138). For example,
branching in ABn miktoarm block copolymers can drive the sphere phase to resemble distinct
crystal lattices inter alia, the face-centered-cubic phase, the body-centered-cubic phase, the com-
plex σ phase, and the A15 phase (132, 139). The impact of the symmetry of the bulk sphere phase
on defects in the corresponding monolayer morphology in thin films is an interesting question.
When a third component, C, is introduced, forming three-component triblock terpolymers, a
tetragonal A/C cylinder phase is stabilized instead of the hexagonal array of cylinders in diblock
copolymers (140, 141). The defects in these tetragonal crystals presumably are very different from
those in hexagonal lattices. Moreover, SCFT calculations predict a variety of binary cylinder
phases when changing the molecular architecture from ABC triblocks to BABCB pentablocks, or
ABCB tetrablock copolymers (142), whose defect structures are unexplored.

Thus, there are ample opportunities for exploiting the specific relationship between the molec-
ular characteristics of copolymer materials (e.g., concentration and architecture of defectants) and
the structures that they stabilize. The subtle dependence of the bulk structures on the molecular
characteristics suggests that the ability of a copolymer material to replicate device-oriented pat-
terns crucially depends on the material properties; i.e., each structure requires a specific fine-tuned
mix of defectants. For instance, in the context of chemoepitaxy, a judicious choice of the defectant
(homopolymer) concentration is required to fabricate isolated-line structures (47). If one aimed
at replicating different, spatially extended patterns on the same wafer (e.g., a mask for electronic
circuits), this strategy would rely on the slow, diffusive sorting of defectants, which occurs on
a timescale that is significantly longer than the timescale of self-assembly. Thus this strategy of
forming programmed defects is limited to high-density structures.

Supramolecular polymer materials that reversibly form and break bonds may help to overcome
this difficulty by acting as universal defectants (130, 143). The idea is that the supramolecular
material rapidly responds to the DSA guiding pattern and locally and reversibly creates a
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defectant mix that allows the copolymer structure to replicate the guiding pattern, eliminating
the fine-tuning of the molecular characteristics and the long-range diffusive sorting required for
multiple patterns.

Quasi-block copolymers are comprised of AB diblock copolymers and supramolecular B seg-
ments that can reversibly bond to any available B terminus on either the copolymers or the B
oligomers, creating a polydisperse blend of B homopolymers and AB diblock and ABA triblock
copolymers (144). A single material is capable of defect-free replication of patterns with perpen-
dicularly crossing, A-preferential lines (forming a tic-tac-toe pattern) differing by up to 50% in
their length scale (see Figure 5). This is a particular challenge because (a) the square symmetry
has not been observed as a bulk morphology of these quasi-block copolymers; (b) the minority
component, A, forms the continuous matrix phase; (c) there is a severe packing frustration where
the lines cross; and (d ) the distance between the internal AB interfaces varies across the pattern.
The successful DSA is achieved by locally tuning the stoichiometry. For this specific example il-
lustrated in Figure 5, the material consists of approximately 90% triblocks, 5% diblocks, and 5%
homopolymers, and counterintuitively, the structure with the larger feature size contains shorter
ABA triblocks than the small-scale structure because the shorter triblocks facilitated the local
swelling of the crossing points of lines (130).

DYNAMICS OF DEFECTS

Thermal and Solvent Annealing

In addition to the thermodynamic equilibrium properties, the processing of the block copolymer
material or the kinetics of structure formation is important. Typically, thin films are produced
by spin coating (145) or solvent casting a polymer-solvent mixture onto a substrate. The solvent
evaporates and leaves behind a polymer film with a well-defined film thickness. This process is
complex. As the solvent evaporates, the polymer density increases. The concomitant increase in
incompatibility, χN, between the components gives rise to microphase separation. The initial con-
dition for this structure formation, however, is ill-defined and presumably depends on material
properties and processing conditions. For instance, depending on the polymer-solvent combina-
tion and the evaporation rate, the solvent concentration may rapidly decrease at the outer, free
surface, resulting in a densification of the polymer at the free surface (skin formation) while leaving
the bulk of the film still with high concentrations of solvent (146–148), which results in a spatially
inhomogeneous start of the structure formation. Rapid solvent evaporation will additionally give
rise to a hydrodynamic flow that may influence structure formation. One might speculate that
extremely slow solvent evaporation will result in an initial structure that is characteristic of the
thermodynamic state close to ODT, which may feature a smaller periodicity than the equilibrium
structure in the absence of solvent. Unfortunately, the kinetics of structure formation in this very
initial stage is only incompletely controlled in experiments and only poorly understood by theory.
Lacking critical information about the initial condition in experiments, theories and simulations
often assume an instantaneous quench from a completely disordered state. In this case, the disor-
dered phase is completely unstable, and structure formation proceeds spontaneously via a spinodal
mechanism, which can be tailored, e.g., by confinement effects or external fields. The fastest grow-
ing mode of composition fluctuations differs in length scale from the equilibrium domain spacing,
resulting in a slight initial strain. This initial stage of structure formation kinetically templates
defects, and a better understanding and control of these processes will provide opportunities to
optimize DSA by minimizing initial defect densities.

Typically, the initial morphology is riddled with defects, and different annealing strategies—
thermal tempering and solvent annealing—have been devised to approach equilibrium, improve
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Quasi-block copolymers Dead, polydisperse copolymers
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Figure 5
Self-assembly of quasi-block copolymers on a tic-tac-toe pattern with two length scales. The left image
depicts the defect-free assembly of quasi-block copolymers, whereas the right image shows the assembled
structure with two defects (marked by ellipses) obtained by a polydisperse mixture with the same, but frozen
distribution of molecules as the left image. The bottom graph shows the molecular weight distribution of
homopolymers, diblocks, and triblocks in the quasi-block copolymer on an unpatterned substrate and two
tic-tac-toe patterns with different characteristic lengths, L0. Reproduced from Reference 130 c© 2010 Am.
Phys. Soc.
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Flory-Huggins
parameter, χ :
measure of the
incompatibility of
monomeric repeat
units; the combination
χ N (N being the
number of monomeric
repeat units) is an
invariant that
characterizes the
incompatibility of
polymers
independently from
the definition of a
monomeric repeat unit

order, and accelerate defect removal. Speeding up the kinetics of structure formation is important
for the insertion of DSA of block copolymers into traditional lithographic processes (149).

Tempering block copolymer films at elevated temperatures (a) increases the chain mobility
and (b) facilitates the crossing of free-energy barriers in the single-chain and collective dynam-
ics. The former effect benefits from the temperature dependence of the liquid-like molecular
packing and the concomitant increase of the chain mobility as temperature is raised above the
glass transition temperature. The latter effect gives rise to an Arrhenius behavior of ordering
times, τ ∼ exp(�F/kBT ). The free-energy barrier, �F, may stem from the segmental dynamics
(e.g., jumps in the torsional potential of consecutive bonds along the molecular backbone), the
single-chain kinetics (e.g., diffusion of a block copolymer across lamellar domains), or collec-
tive transformations of the domain structure that involve unfavorable intermediates. The latter
phenomena are discussed in further detail in the section on Defect Kinetics in Stripe Patterns.

Additionally, a temperature increase may affect the equilibrium thermodynamics of the system
by altering the incompatibility, χN, between the blocks or the surface tensions between the blocks
and the free surface or the supporting substrate. The latter may result in a different orientation of
the microphase, i.e., a switch from a perpendicular to a parallel structure or vice versa.

For PS-b-PMMA block copolymers, the temperature dependence of the Flory-Huggins
parameter, χ , and the surface tensions is rather small, whereas for PS-b-P2VP block copolymers,
the ODT temperature can be assessed in the temperature interval between the glass transition
temperature and the onset of thermal degradation. In this case, a higher annealing temperature
corresponds to a smaller incompatibility, χN, and favors a smaller domain spacing, a lower
excess free energy of defects, and smaller free-energy barriers of collective transformations of the
domain structure.

Solvent annealing alters both the thermodynamics and the dynamics (150). In the simplest
case a solvent of low molecular weight swells both domains of the block copolymer material
and reduces the incompatibility.1 This reduces the domain spacing and may result in a tilting of
perpendicular domains upon solvent uptake (151). If the solvent exhibits a preference for one of
the components, it will alter the volume fractions of the components and may induce a transition
to another microphase-separated structure. Solvent concentration may also be enhanced at the
substrate and/or the free surface, alter the surface tension, and result in dewetting of a thin
supported polymer film (152). The defect structures observed in the course of thermal and
solvent annealing are qualitatively similar. For symmetric PS-b-PMMA block copolymers, whose
thermodynamics is rather independent of temperature, solvent annealing results in a lower defect
density in experiments (69).

Defect Kinetics in Stripe Patterns

Defects are localized deviations from the ideally ordered state that are characterized by an excess
free energy, �Fd. Except for the ultimate vicinity of ODT, however, �Fd � kBT , and therefore

1By virtue of its large translational entropy, a nonselective, low-molecular-weight solvent rather uniformly distributes in the
copolymer film. In this case, the repulsive interactions between the copolymer components are diluted and incompatibility is
proportional to the polymer volume fraction, χ ∼ φpoly. This reduction of incompatibility is enhanced by the tendency of the
solvent to enrich at the AB interfaces (175). For larger concentration of solvent, the polymers locally adopt self-avoiding walk

statistics, which reduces the unfavorable interactions between distinct blocks even further, χ ∼ φ
1+ 1+νω12

3ν−1
poly where ν ≈ 0.588

and ω12 ≈ 0.4 are the scaling exponent of self-avoiding walks and the correction to scaling exponent that characterizes the
contacts of two mutually interdigitating self-avoiding walks, respectively (176–178).
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Minimum
free-energy path
(MFEP): path in the
free-energy landscape
connecting two
minima, so that the
perpendicular
component of the
chemical potential
vanishes along the path

defects are not equilibrium fluctuations but long-lived metastable states into which the kinetics of
structure formation has been trapped. Therefore, not only the excess free energy, �Fd, but also
the mechanisms of defect removal and grain boundary motion and the concomitant free-energy
barriers, �Fb, of these thermally activated processes are important.

Qualitatively, the initial ordering proceeds via the annihilation of defects and high-energy grain
boundaries. This process results in the formation of larger grains with a specific orientation and a
low defect density inside the grains. Grain boundaries separate grains with different orientations,
and the large-scale coarsening of the grain structure at late stages involves grain-boundary motion.
Ryu and coworkers (113) have observed a quasi-stationary grain-coarsening, which is dominated
by the annihilation of low-angle continuous tilt grain boundaries, whereas T-junctions and twist
grain boundaries are protracted.

In the context of DSA, the initial stage of ordering (i.e., grain formation and removal of defects
inside a grain) is particularly important because the chemical or topographical guiding patterns
dictate the orientation of the structure on large length scales. At intermediate and strong segre-
gations, dislocation dipoles or jogs have a low excess free energy compared with more complex
defects; indeed, they are observed during structure formation of lamella-forming block copoly-
mers on chemical stripe patterns (149, 153), in particular when the chemical guiding pattern
is slightly narrower than the bulk period (67). Coarse-grained simulations of chemoepitaxy and
SCFT calculations of graphoepitaxy (133) show that an incommensurability between the period-
icity of the guiding pattern, LS, or the width of the topographic channel decreases the defect free
energy. Dislocations in stripe patterns are also typical defects in thin films of cylinder-forming
copolymers that are aligned by topographic patterns (74) or by shear (154).

One computational technique to obtain detailed information about the mechanism of defect
removal consists of studying the free-energy landscape, in which the collective ordering kinetics
evolves. The minimum free-energy path (MFEP) constructs a sequence of morphologies that con-
nects the defect structure to a perfectly ordered, defect-free structure, such that the free-energy
gradient in the direction perpendicular to the path vanishes (155). This method provides a ther-
modynamic estimate for the most probable path of collective transformations without assuming
a reaction coordinate (156, 157). The metastable defect and the perfectly ordered structure are
local and global minima of the free-energy profile, respectively, which are separated by one or
multiple free-energy barriers, �Fb. According to Kramer’s transition state theory, the highest
barrier, �F ∗

b , along the defect-removal path dictates the rate of defect removal, exp(−�F ∗
b /kBT ).

Because the free-energy landscape of block copolymers is characterized by multiple local minima
(158), representing inter alia metastable defects, there may be multiple paths that connect a defect
structure to an ordered structure, and the path with the lowest �F ∗

b will dominate the kinetics.
In the initial stages of ordering, the density of defects is high, giving rise to strong interactions

between defects. In this limit, individual defects may not be clearly distinguishable, and the struc-
ture changes, implied in their motion and annihilation, may involve complex, spatially extended
intermediate structures (59). To quantitatively analyze defect annihilation mechanisms, it is useful
to examine the most basic scenarios.

Dislocations with opposite Burgers vectors attract each other via strain-field-mediated inter-
actions. One of multiple important factors setting the timescale of the strain-field-driven defect
motion is the self-diffusion coefficient of the polymer because the collective change of structure
requires the motion of the constituent polymer molecules. The strain-field-mediated attractions
make the two dislocations collide and form a tight disclination dipole, which corresponds to a
local minimum of the free energy. The annihilation of this metastable, tight dipole disclination is
a thermally activated process that involves breaking and rejoining of domains.
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Figure 6
(a) Wetting-like defect annihilation mechanism between a tight dislocation pair, α = 0, and perfect lamellae, α = 1, for χ N = 30 and
film thickness D with (�0N = 0.11 black line) and without (blue line) guiding pattern. The dimensionless free-energy profile
� f = Re0�Fb/DkBT

√
N along the string, α, is shown. The excess free energy, �Fd, and the highest energy barrier, �F∗

b , are
indicated. The inset enlarges the region near the barrier with guiding pattern, �0 N = 0.11. (b1), (b2), and (b3) Intermediate structures
at the barrier, α ≈ 0.059, and the two shoulders, α ≈ 0.318 and α ≈ 0.420, respectively, for the wetting-like mechanism (MFEP2).
(c) Defect free energy and free-energy barrier for the 2D and wetting-like (MFEP2) mechanism as a function of χN. The inset presents
the dependence of �fb for the wetting-like mechanism on the strength of the guiding pattern, �0N. Reproduced from Reference 63 c©
2014 Am. Phys. Soc.

Takahashi et al. constructed the MFEP of removing tight dislocation pairs and disclinations in
a graphoepitaxy channel using 2D2 SCFT (133). Defect removal proceeds by a sequential breaking
and rejoining of domains, and the free-energy barrier of the intermediate structures along the path
decreases upon lowering the incompatibility, χN. The free-energy barrier, �Fb, as a function of
the channel width adopts its minimum not when the channel width is commensurate with the bulk
lamellar period but when the lamellae are slightly compressed, whereas the defect free energy,
�Fd, is highest when the lamellae are slightly stretched. Both �Fd and �Fb increase as the number
of lamellae in the channel becomes larger (133).

Li et al. (63) used 3D string calculations to explore defect-removal mechanisms of a dislocation
pair on nonpatterned substrates and chemical stripe patterns, as illustrated in Figure 6. Along one
path, 2D-MFEP, the structures along the MFEP remain uniform perpendicular to the substrate,

2The assumption of translational symmetry perpendicular to the substrate, often invoked in self-consistent field calculations
and cell dynamics simulations of continuum models (170) for computational reasons, may misrepresent the directing effect of
the chemical or topographical guiding pattern.
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and, similar to the findings of Takahashi et al. (133), the removal of a B-core dislocation dipole
proceeds by a lateral motion of the internal AB interfaces, sequentially breaking the misaligned
A-connections and subsequently rejoining the central A-domain.

Previous experiments and simulations indicate that in DSA on chemical patterns the order
grows from the substrate to the free surface (10, 153). In the 3D string calculations, the sequential
breaking of A-connections starts at the bottom substrate, forming an aligned defect-free grain
at the guiding pattern. This defect-free grain at the substrate is separated by a horizontal grain
boundary from the defect structure at the top of the film, qualitatively similar to the grain boundary
depicted in Figure 3. In this wetting-like mechanism, the thickness of the aligned grain grows,
pushing the grain boundary toward the top surface, and the misaligned defect grain at the top
becomes thinner (63). Even on a nonpatterned substrate, the free-energy barrier of this wetting-
like mechanism is significantly lower than that of the 2D-MFEP (63).

For both mechanisms, 2D-MFEP and wetting-like MFEP, on nonpatterned surfaces, �Fd

and �Fb decrease approximately linearly with incompatibility in the range 20 ≤ χ N ≤ 36 (63,
133). As the degree of polymerization is decreased (at fixed χ ), a significant reduction of the areal
defect density has been observed in experiments by Stoykovich and coworkers (70), and this effect
has been attributed to a reduced activation free energy for defect annihilation. As expected, the
defect free energy �Fd extrapolates to zero in the vicinity of the ODT, χ N ODT ≈ 10.5. However,
the free-energy barrier of defect removal vanishes around χ N ∗ ≈ 18; moreover, this value
appears to be independent of the defect removal mechanism, 2D-MFEP or wetting-like MFEP,
on nonpatterned substrates. The latter finding suggests that the loss of defect metastability on
nonpatterned surfaces is associated with interactions between the distorted, internal AB interfaces
of the defect. By reducing the segregation, one increases the width of the internal AB interfaces.
The concomitant range of interactions, which are mediated by the composition profiles across an
interface, approaches the domain size hence promoting topological changes of the morphology.

A chemical guiding pattern facilitates the formation of the aligned grain at the substrate and in-
creases the limit, χ N ∗, of defect metastability, as suggested by the theory of wetting (160). Figure 6
shows that there exists a range of incompatibilities around χ N ∗ that fulfills two criteria: (a) The
excess free energy of defects is much larger than the thermal energy scale, �Fd � kBT ; thus, the
probability that a defect spontaneously forms in a defect-free structure is vanishingly small. Note
that Figure 6 indicates that �Fd can be on the order of 100kBT at χ N ∗. (b) The free-energy
barrier along the path of defect removal vanishes or is comparable to kBT, such that defects are not
even metastable. Thus, defects, which have been generated in the course of structure formation,
spontaneously annihilate. These thermodynamic conditions are well suited for defect-free DSA
(63).

Two dislocations with opposite signs of Burgers vector attract each other owing to long-range
strain-field-mediated interactions (161, 162). Thus, these defects will move toward each other
and will annihilate according to the above mechanisms upon collision. In smectic liquid crystals
and block copolymers, the dislocation motion along the direction of the stripe pattern—climb—
is much faster than defect motion across stripes—glide. In the former case, the defect breaks
the continuous translational symmetry along the stripes and can move in infinitesimal increments
with a vanishingly small free-energy barrier. In the latter case, the dislocation core discontinuously
jumps by a (multiple of a) period, requiring a change in the domain connectivity and giving rise
to a sizable free-energy barrier (163, 164).

If two dislocations are far apart [precollision regime (165)], the core of the defects is hardly
affected by their interaction. The force, F, between dislocations inversely varies with their distance,
Fdd ∼ 1/r , and is proportional to the velocity with which the two dislocations approach each other.
Their mutual distance decreases as r2(t) = r2(0)−8Dddt, with time, t (74, 165). The coefficient Ddd
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Swift-Hohenberg
model: Landau model
of spatially modulated
phases characterized
by composition
fluctuations with
wavevectors of a given
magnitude

is proportional to the mobility of a defect and greatly differs between climb and glide motions.
This behavior has been confirmed by experiments (74), and typical coefficients for this driven
precollision kinetics are Dclimb

dd ∼ 10−12 cm2/s and Dglide
dd ∼ 10−13 cm2/s in thin films of cylinder-

forming PS-b-PMMA copolymers of 77 kDa at 240◦C.
Whereas climb of dislocations does not involve a collective free-energy barrier, it will be

protracted if the two dislocations with opposite orientation are strictly apposed along the direction
of the stripe pattern. In this special case, an additional domain of length L is formed. The MFEP
predicts that the two dislocations approach each other decreasing the free energy linearly with
shrinking L. When they collide, they do not even form a metastable state; i.e., there is no collective
free-energy barrier in this defect annihilation mechanism (63). Nevertheless, the process is intrin-
sically slow because the blocks in the extra domain must tunnel through the enclosing opposite
domains to remove material from the extra domain, shrinking its length, L. This diffusion process
perpendicular to the lamellae exposes the blocks to unfavorable interactions, and the concomitant
barrier in the single-chain motion is of the order f χNkBT , where f is the volume fraction of the
block that forms the extra domain. The equivalent conclusion can be obtained using the local den-
sities of the blocks, φA and φB, as collective variables, which is routinely done in time-dependent
Ginzburg-Landau (TDGL) calculations. As is found using collective variables, this intrinsic
slowness stems not from a collective free-energy barrier but from a small Onsager coefficient,
�, that relates the thermodynamic driving force—the strain-field-mediated interactions—to a
composition current and, via the continuity equation, to a change of local composition. In an
incompressible system, � ∼ φAφB . Inside the surrounding domain, which the blocks of the extra
domain must pass, the product of densities is approximately exp(− f χ N ); i.e., the thermodynamic
driving force does not efficiently translate into a composition change. Note that this special
case is analogous to the slowness of climb motion in atomic crystals, where it also involves mass
transport.

The motion of disclinations is more complex. It involves the breaking and rejoining of domains
and the formation of dislocations (64, 66). Pairs of disclinations with opposite Burgers vectors (see
Figure 7) exert an attractive force onto each other, but they cannot simply move in response to
the force because of the topological constraint imposed by the stripe pattern. The annihilation
of a disclination pair produces disclinations to conserve the Burgers vector. Thus, pairwise an-
nihilation of disclinations is suppressed by the topological constraints; instead, the annihilation
of disclination quadrupoles, in which the two disclination pairs have opposite Burgers vectors, is
frequently observed in experiments and gives rise to a time dependence of the average separation
r4(t) − r4(0) ∼ t (166). Figure 7 shows that the two complementary quantities—the orientational
correlation length, ξ 2, and the interdefect spacing, ρ

−1/2
d , with ρd being the 2D number density of

defects—grow like t1/4 in a thin film of cylinder-forming PS-b-PI diblock copolymers (166). The
experiments are in agreement with simulations of the diblock copolymer lamellar phases described
by the Swift-Hohenberg model (167) or by the OK model (168) and 2D smectic-A liquid crystals
described by the Landau–de Gennes free-energy functional (169). These experiments have also
been corroborated by cylinder-forming PS-b-PMMA thin films, but significantly smaller growth
exponents of the characteristic length have been observed in standing lamellae, potentially owing
to differences in the geometry (a) of transition intermediates involved in breaking and rejoining
of domains in the course of defect motion (73) and (b) of the pinning of the internal AB interfaces
at the supporting substrate (68).

The ordering kinetics guided by a sparse stripe pattern has been investigated by using 2D cell
dynamic simulations (170). In agreement with experiments (149, 153), the simulations show that
the time to achieve defect-free ordering will increase if the incommensurability between stripe
pattern and bulk copolymer structure increases. In case of density multiplication by a factor n,

204 Li · Müller

A
nn

u.
 R

ev
. C

he
m

. B
io

m
ol

. E
ng

. 2
01

5.
6:

18
7-

21
6.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
Fu

da
n 

U
ni

ve
rs

ity
 o

n 
03

/2
2/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



CH06CH10-Mueller ARI 14 July 2015 19:11

103 104

200 nm200 nm

Silicon

a

d e

bb cc

105 106

102

103

ξ 2
 (

n
m

)
ρ–

½
 (n

m
)

Annealing time (s)

103 104 105 106

102

103

– +

f

g

Figure 7
Defects in cylinder-forming PI-b-PS thin films. (a) Schematic of the one-layer morphology where the matrix
component polystyrene (PS) (red ) wets both the air and the silicon substrate. (b) AFM image of a disclination
dipole (+1/2 disclination indicated by the blue circle, −1/2 disclination by the red circle) and additional
dislocations. (c) The annihilation of a disclination dipole results in multiple disclinations (one of which is
indicated by the orange circle). (d,e) Schematic illustration of the annihilation of a disclination dipole into
three dislocations. ( f ) Orientational correlation length, ζ 2, as a function of time for two temperatures, T =
443 K (red circles) and 413 K ( green data), respectively. The solid blue lines are power-law fits to the data,
yielding kinetic exponents of 0.25 ± 0.02 at both temperatures. ( g) The average spacing between
disclinations with positive (circles) and negative (crosses) sign as a function of annealing time for the same
system. Power-law fits indicate a kinetic exponent of 1/4. From Reference 166. Reprinted with permission
from AAAS.

the simulations indicate an increase of the ordering timescale like n4, which is consistent with the
power law evolution of the correlation length ξ ∼ t1/4 in the absence of a guiding pattern.

Defect Kinetics in Hexagonal Patterns

The ordering kinetics in hexagonal patterns has been studied by experiment (88) and theory (89,
91, 95, 171–173). Dislocations with opposite Burgers vectors attract each other, causing them to
collide and annihilate. Their motion involves the creation and destruction of spherical domains, as
illustrated in Figure 2 (97). In contrast to smectic patterns, however, it is experimentally difficult
to follow the motion of individual defects (89). Thus, most studies have focused on the late stages
of grain growth. Using 2D simulations of the OK free-energy functional, Yokojima & Shiwa (171)
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observed that the characteristic length, ξ 6, of orientational order approximately followed a power-
law growth in time with an exponent 1/5 (with or without hydrodynamics). Harrison et al. (88)
have carefully investigated the ordering dynamics in a single-layer-thick film of sphere-forming
block copolymers in the hexatic regime. Dislocations condense into grain boundaries, and the
subsequent coarsening is dictated by the annihilation of small grains. Different measures of the
length scale of order have been studied: (a) the correlation lengths, ξ 6, of sixfold orientational order;
(b) the mean distance between disclinations, ρ

−1/2
dc , where ρdc denotes the number density of free

disclinations (i.e., not bound into a dislocation); and (c) the mean length of grain boundaries, which
is proportional to 1/(pρdl). ρdl is the number density of dislocations that are almost exclusively
located at grain boundaries, and p is the mean distance of dislocations along a grain boundary that
remains roughly constant in the absence of grain rotation. Whereas the former correlation length
scales like ξ6 ∼ t1/4, the latter two quantities exhibit a power law with a smaller exponent of 1/5
(88).

Vega et al. systematically studied the ordering and grain growth in 2D hexagonal systems by
TDGL simulations of the OK free-energy functional (89) and compared the results with experi-
ments (88). Free dislocations are typically induced by fluctuations of the orientational order field.
The strain fields of isolated dislocations and dislocations bound to small-angle grain boundaries
are poorly screened, causing pairs with opposite Burgers vectors to collide and annihilate. Vega’s
simulations indicate that most of the dislocations cluster to form large-angle grain boundaries.
The average distance p between dislocations on large-angle grain boundaries is approximately
2.5a, where a denotes the lattice spacing, corresponding to an average misorientation of approxi-
mately 20◦; p only evolves very slowly in time. This value of p also relates to the maximal period
of sparse periodic, chemical or topographical guiding patterns for defect-free DSA.

The temporal evolution of polycrystalline patterns in the late stage consists of grain growth,
chiefly driven by grain boundary motion. In accord with experiments (88), simulations have ob-
served different power laws for the length scales extracted from the dislocation density and the
orientational correlation function, t1/5 and t1/4, respectively (89). Vega et al. (89) analyzed whether
the difference in growth exponents stems from a time dependence of the dislocation distance p
along a grain boundary, from grain rotation, or from preferential annihilation of small-angle grain
boundaries and favored the latter rational.

The grain boundary motion is driven mainly by the forces acting on triple junctions or forks
(89). This force will vanish if the three grain boundaries join at angles of 120◦. On very large
timescales, grain boundaries between pinned triple junctions straighten, and a logarithmic growth
is observed (91, 174).

Li et al. (173) studied the time evolution of defect concentration in hexagonal morphologies
consisting of order 104 domains guided by a sparse hexagonal field of spots, whose periodicity is an
integer multiple, n, of the copolymer period by 2D simulations of the OK free-energy functional.
This 2D model mimics density multiplication via a periodic array of nanoposts, which has a di-
recting effect throughout the entire film thickness. Figure 8 shows that the defect concentration
exponentially decays in time for n ≤ 4, whereas it behaves similarly to unguided structure for-
mation for n = 6. For n = 5, the evolution of defect concentration initially follows a power law
similar to the case n = 6 but subsequently decays faster. Analyzing the grain coarsening, Li et al.
revealed that the directing effect of the guiding pattern results from preventing the formation of
large grain boundaries in the initial stage by registered domains with the guiding pattern. One
can observe this effect by comparing the grain distributions of the cases n = 4 and n = 6 in
Figure 8. In the initial stage, grains in the case n = 4 (panel c) are smaller than those for n = 6
(panel d ), resulting in fewer grain boundaries for n = 4 (panel e) than for n = 6 (panel f ) at later
times. The critical multiple around n = 5 is closely related to the average distance of dislocations,
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Figure 8
Time evolution of defect concentration of standing cylinders directed by a sparse, hexagonal guiding pattern
for various ratios between the cylinder spacing, L0, in the bulk and the spacing of the guiding pattern, LS.
(a) LS/L0 = 3 and 4, (b) LS/L0 = 5 and 6. Orientational maps of hexagonal domains formed on sparse
hexagonal guiding fields with periods of c and e: LS/L0 = 4, and d and f: LS/L0 = 6. c and d depict the early
stage of coarsening, whereas e and f correspond to the late stage. The bottom color spectrum indicates the
angle range between 0◦ to 60◦. Reprinted with permission from Reference 173 c© 2010 Am. Chem. Soc.
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approximately 2.5 lattice spacings, without guiding patterns (88, 89). When the spacing between
two guiding spots is larger than n = 5, the registered domains do not prevent dislocations from
clustering into grain boundaries.

PERSPECTIVES

Defects in soft matter, such as copolymer materials or liquid crystals, exhibit a fascinating richness
of structures and dynamic properties. At the same time, the understanding and control of these
properties are critical for block copolymer lithography, which aims at directing the self-assembly
into (a) dense, periodic, defect-free structures or (b) programmed defects like irregular, device-
oriented structures on sub-30-nm scales. In this review, we illustrate the relevance of equilibrium
and dynamic properties of defects for DSA of block copolymers.

Whereas the universal aspects of large-scale ordering of 2D stripe and hexagonal structures
have attracted abiding theoretical and experimental interest, clarifying the mechanisms of grain
growth and grain boundary motion at late stages of ordering and the concomitant power-law
growth of the ordering length in time, there remain several open questions that are relevant to
DSA:

� The three-dimensionality of the structure, the role of film surfaces, and the interaction with
the guiding pattern may allow for additional defect removal mechanisms that differ from
the universal, 2D behavior in the absence of guiding patterns. The excess free energy of
defects as well as the free-energy barrier of defect removal depend on the film thickness, and
the wetting layers of monolayer-thick cylinder or sphere structures influence the collective
changes of the domain structure and the diffusion paths of the constituent macromolecules.

� The specific mechanisms by which sparse chemical or topographical guiding patterns align
and register the 3D copolymer structure, constrain grain orientation, and interact with
defects deserve further investigation. We expect that some of these aspects will depend on
the specific types of guiding pattern, chemical or topographical, because they differently
influence the 3D copolymer structures.

� Strategies to direct the copolymer structures in three dimensions and to stabilize irregular
structure have attracted much less attention than the fabrication of dense, 2D periodic pat-
terns. Additionally, strategies to encode specific defect structures or quadratic or tetragonal
structures in the macromolecular architecture must be explored further.

� The role of thermal fluctuations on the stability of defects, their motion, their placement,
and their annihilation mechanisms is only incompletely understood. Fluctuation effects will
become important for replicating small-scale structures with polymers of lower invariant
degrees of polymerization, N̄ .

� The early stages of structure formation are important for DSA because the guiding pattern
directs the spontaneous, spinodal self-assembly. Because these initial structures template
defects, controlling these very early stages of self-assembly is critical to minimize the defect
density.

� Almost perfect DSA patterns are often characterized by a low density of isolated defects or
local defect assemblies. These structures qualitatively differ from the late stages of ordering
without guiding fields, which typically consist of large grains separated by grain boundaries,
but their ordering mechanisms are less explored.

� The relationship between the kinetics of collective transformations of the domain structure
and the underlying motion of the macromolecules is only incompletely understood. Because
the diffusion of macromolecules in a spatially modulated structure is much faster parallel
than perpendicular to the internal AB interfaces, defect annihilation will be significantly
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slowed down if it demands perpendicular transport across internal interfaces. Additionally,
the role of entanglements and strong dynamic asymmetries between the components of
the block copolymer, e.g., owing to different glass transition temperatures, will affect the
single-chain dynamics.
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121. Liu G, Ramı́rez-Hernández A, Yoshida H, Nygård K, Satapathy DK, et al. 2012. Morphology of lamellae-

forming block copolymer films between two orthogonal chemically nanopatterned striped surfaces. Phys.
Rev. Lett. 108:065502

122. Ramı́rez-Hernández A, Liu G, Nealey PF, de Pablo JJ. 2012. Symmetric diblock copolymers confined
by two nanopatterned surfaces. Macromolecules 45:2588–96

123. Parry AO, Evans R. 1990. Influence of wetting on phase equilibria: a novel mechanism for critical-point
shifts in films. Phys. Rev. Lett. 64:439–42

124. Müller M, Albano EV, Binder K. 2000. Symmetric polymer blend confined into a film with antisymmetric
surfaces: interplay between wetting behavior and the phase diagram. Phys. Rev. E 62:5281–95

125. Müller M. 2012. Geometry-controlled interface localization-delocalization transition in block copoly-
mers. Phys. Rev. Lett. 109:087801

126. Garcı́a NA, Davis RL, Kim SY, Chaikin PM, Register RA, Vega DA. 2014. Mixed-morphology and
mixed-orientation block copolymer bilayers. RSC Adv. 4:38412–17

127. Li WH, Müller M. 2015. Directed self-assembly of block copolymers: optimizing molecular architecture,
thin-film properties, and kinetics. Prog. Polym. Sci. In press

128. Kang H, Detcheverry FA, Mangham AN, Stoykovich MP, Daoulas KCh, et al. 2008. Hierarchical
assembly of nanoparticle superstructures from block copolymer-nanoparticle composites. Phys. Rev.
Lett. 100:148303

129. Kim Y, Chen H, Alexander-Katz A. 2014. Free energy landscape and localization of nanoparticles at
block copolymer model defects. Soft Matter 10:3284–91

130. Daoulas KC, Cavallo A, Shenhar R, Müller M. 2010. Directed assembly of supramolecular copolymers
in thin films: thermodynamic and kinetic advantages. Phys. Rev. Lett. 105:108301

131. Kirchheim R. 2009. On the solute-defect interaction in the framework of a defactant concept. Int. J.
Mater. Res. 100:483–87

132. Xie N, Li WH, Qiu F, Shi AC. 2014. σ phase formed in conformationally asymmetric AB-type block
copolymers. ACS Macro Lett. 3:906–10

133. Takahashi H, Laachi N, Delaney KT, Hur S-M, Weinheimer CJ, et al. 2012. Defectivity in later-
ally confined lamella-forming diblock copolymers: thermodynamic and kinetic aspects. Macromolecules
45:6253–65

134. Cooke DM, Shi AC. 2006. Effects of polydispersity on phase behavior of diblock copolymers.
Macromolecules 39:6661–71
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